
Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib 10 - 1

BoosterPacks and grLib

Introduction

This chapter will take a look at the currently available BoosterPacks for the LaunchPad board.

We’ll take a closer look at the Kentec Display LCD TouchScreen BoosterPack and then dive into

the StellarisWare graphics library.

Agenda

LaunchPad Boards...

Introduction to ARM® Cortex™-M4F and Peripherals

Code Composer Studio

Introduction to StellarisWare,
Initialization and GPIO

Interrupts and the Timers

ADC12

Hibernation Module

USB

Memory

Floating-Point

BoosterPacks and grLib

Synchronous Serial Interface

UART

µDMA

Chapter Topics

10 - 2 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib

Chapter Topics

BoosterPacks and grLib ...10-1

Chapter Topics ...10-2

LaunchPad Boards and BoosterPacks ...10-3

KenTec TouchSceen TFT LCD ..10-7

Graphics Library ...10-8

Lab 10: Graphics Library .. 10-11
Objective.. 10-11
Procedure ... 10-12

 LaunchPad Boards and BoosterPacks

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib 10 - 3

LaunchPad Boards and BoosterPacks

TI LaunchPad Boards

MSP430
$9.99US

Stellaris
$12.99US

C2000 Piccolo
$17.00US

BoosterPack Connectors...

BoosterPack Connectors

 Original Format (MSP430)
• VCC and Ground

• 14 GPIO

• Emulator Reset and Test

• Crystal inputs or 2 more GPIO

 XL Format (Stellaris/C2000) is a
superset of the original, adding
two rows of pins with:
• USB VBUS and Ground

• 18 additional GPIO

Available Boosterpacks...

LaunchPad Boards and BoosterPacks

10 - 4 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib

Some of the Available BoosterPacks

TMP006 IR
Temperature

Sensor

C5000 Audio
Capacitive Touch

Olimex
8x8 LED Matrix

Sub-1GHz RF
Wireless

TPL0501 SPI
Digital Pot.

TPL0401 SPI
Digital Pot.

RF Module w/
LCD

Inductive
Charging

Solar Energy
Harvesting

Universal
Energy

Harvesting

Capacitive
Touch

Proto
Board

Available Boosterpacks...

Some of the Available BoosterPacks

Proto board ZigBee Networking OLED Display

LCD Controller
Development Package

Click Board
Adapter

MOD Board
Adapter

Kentec LCD Display...

See http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/default.aspx for a list of TI

boosterpacks.

http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/default.aspx

 LaunchPad Boards and BoosterPacks

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib 10 - 5

Solar Energy Harvesting:
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/06/08/cymbet-enerchip-

cc-solar-energy-harvesting-evaluation-kit-cbc-eval-10.aspx

Universal Energy Harvesting:
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/06/08/cymbet-enerchip-

ep-universal-energy-harvesting-evaluation-kit-cbc-eval-09.aspx

Capacitive Touch:
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/04/17/430boost_2d00_se

nse1.aspx

RF Module w/ LCD:
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/07/13/golden-ic-rf-

module-with-lcd-boosterpack.aspx

Inductive Charging:
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/06/08/cymbet-enerchip-

ep-universal-energy-harvesting-evaluation-kit-cbc-eval-11.aspx

Proto Board:
http://joesbytes.com/10-ti-msp430-launchpad-mini-proto-board.html

Olimex 8x8 LED Matrix:
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/09/07/8x8-led-matrix-

boosterpack-from-olimex.aspx

Sub-1GHz Wireless:

http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/12/01/texas-instruments-

sub-1ghz-rf-wireless-boosterpack-430boost-cc110l.aspx

TPL0401 SPI Digital Potentiometer:

http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/11/18/texas-instruments-

tpl0401-based-i2c-digital-potentiometer-tpl0401evm.aspx

TMP006 IR Temperature Sensor:

http://www.ti.com/tool/430boost-tmp006

C5000 Audio Capacitive Touch:

http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2012/03/27/texas-instruments-

c5000-audio-capacitive-touch-boosterpack-430boost-c55audio1.aspx

TPL0501 SPI Digital Potentiometer:

http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/11/18/texas-instruments-

tpl0501-based-spi-digital-potentiometer-tpl0501evm.aspx

Proto Board:

http://store-ovhh2.mybigcommerce.com/ti-booster-packs/

LCD Controller Development Package:

http://www.epson.jp/device/semicon_e/product/lcd_controllers/index.htm

http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/06/08/cymbet-enerchip-cc-solar-energy-harvesting-evaluation-kit-cbc-eval-10.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/06/08/cymbet-enerchip-cc-solar-energy-harvesting-evaluation-kit-cbc-eval-10.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/06/08/cymbet-enerchip-ep-universal-energy-harvesting-evaluation-kit-cbc-eval-09.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/06/08/cymbet-enerchip-ep-universal-energy-harvesting-evaluation-kit-cbc-eval-09.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/04/17/430boost_2d00_sense1.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/04/17/430boost_2d00_sense1.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/07/13/golden-ic-rf-module-with-lcd-boosterpack.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/07/13/golden-ic-rf-module-with-lcd-boosterpack.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/06/08/cymbet-enerchip-ep-universal-energy-harvesting-evaluation-kit-cbc-eval-11.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/06/08/cymbet-enerchip-ep-universal-energy-harvesting-evaluation-kit-cbc-eval-11.aspx
http://joesbytes.com/10-ti-msp430-launchpad-mini-proto-board.html
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/09/07/8x8-led-matrix-boosterpack-from-olimex.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/09/07/8x8-led-matrix-boosterpack-from-olimex.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/12/01/texas-instruments-sub-1ghz-rf-wireless-boosterpack-430boost-cc110l.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/12/01/texas-instruments-sub-1ghz-rf-wireless-boosterpack-430boost-cc110l.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/11/18/texas-instruments-tpl0401-based-i2c-digital-potentiometer-tpl0401evm.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/11/18/texas-instruments-tpl0401-based-i2c-digital-potentiometer-tpl0401evm.aspx
http://www.ti.com/tool/430boost-tmp006
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2012/03/27/texas-instruments-c5000-audio-capacitive-touch-boosterpack-430boost-c55audio1.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2012/03/27/texas-instruments-c5000-audio-capacitive-touch-boosterpack-430boost-c55audio1.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/11/18/texas-instruments-tpl0501-based-spi-digital-potentiometer-tpl0501evm.aspx
http://e2e.ti.com/group/msp430launchpad/b/boosterpacks/archive/2011/11/18/texas-instruments-tpl0501-based-spi-digital-potentiometer-tpl0501evm.aspx
http://store-ovhh2.mybigcommerce.com/ti-booster-packs/
http://www.epson.jp/device/semicon_e/product/lcd_controllers/index.htm

LaunchPad Boards and BoosterPacks

10 - 6 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib

ZigBee Networking:

http://www.anaren.com/

MOD Board adapter:

https://www.olimex.com/dev/index.html

OLED Display:

http://www.kentecdisplay.com/plus/view.php?aid=74

Click Board Adapter:

http://www.mikroe.com/eng/categories/view/102/click-boards/

http://www.anaren.com/
https://www.olimex.com/dev/index.html
http://www.kentecdisplay.com/plus/view.php?aid=74
http://www.mikroe.com/eng/categories/view/102/click-boards/

 KenTec TouchSceen TFT LCD

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib 10 - 7

KenTec TouchSceen TFT LCD

KenTec TouchScreen TFT LCD Display

 Part# EB-LM4F120-L35

 Designed for XL BoosterPack pinout

 3.5” QVGA TFT 320x240x16 color LCD
with LED backlight

 Driver circuit and connector are
compatible with 4.3”, 5”, 7” & 9”displays

 Resistive Touch Overlay
grLib Overview...

For more information go to: http://www.kentecdisplay.com/

http://www.kentecdisplay.com/

Graphics Library

10 - 8 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib

Graphics Library

Graphics Library Overview

The Stellaris Graphics Library provides graphics primitives and widgets sets
for creating graphical user interfaces on Stellaris controlled displays.

Note that Stellaris devices do not have an LCD interface. The interface to
smart displays is done through serial or EPI ports.

The graphics library consists of three layers to interface your application to
the display:

Display Driver Layer*

Graphics Primitives Layer

Widget Layer

Your Application Code*

* = user written or modified
grLib Overview...

Graphics Library Overview

The design of the graphics library is governed by the following
goals:

 Components are written entirely in C except where absolutely not possible.

 Your application can call any of the layers.

 The graphics library is easy to understand.

 The components are reasonably efficient in terms of memory and processor
usage.

 Components are as self-contained as possible.

 Where possible, computations that can be performed at compile time are
done there instead of at run time.

Display Driver...

 Graphics Library

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib 10 - 9

Display Driver

Routines for display-dependent operations like:

 Initialization

 Backlight control

 Contrast

 Translation of 24-bit RGB values to screen dependent color map

Drawing routines for the graphics library like:

 Flush

 Line drawing

 Pixel drawing

 Rectangle drawing

User-modified Hardware Dependent Code

 Connectivity of the smart display to the LM4F

 Changes to the existing code to match your
display (like color depth and size)

Low level interface to the display hardware

Graphics Primitives...

This document: http://www.ti.com/lit/an/spma039/spma039.pdf has suggestions for modifying

the display driver to connect to your display.

Graphics Primitives

Low level drawing support for:

 Lines, circles, text and bitmap images

 Support for off-screen buffering

 Foreground and background drawing contexts

 Color is represented as a 24-bit RGB value (8-bits per color)

 ~150 pre-defined colors are provided

 153 pre-defined fonts based on the Computer Modern typeface

 Support for Asian and Cyrillic languages

Widgets...

http://www.ti.com/lit/an/spma039/spma039.pdf

Graphics Library

10 - 10 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib

Widget Framework
- Widgets are graphic elements that provide user
control elements

- Widgets combine the graphical and touch screen
elements on-screen with a parent/child hierarchy so
that objects appear in front or behind each other
correctly

Canvas – a simple drawing surface with no user
interaction

Checkbox – select/unselect

Container – a visual element to group on-screen widgets

Push Button – an on-screen button that can be pressed
to perform an action

Radio Button – selections that form a group; like low,
medium and high

Slider – vertical or horizontal to select a value from a
predefined range

ListBox – selection from a list of options

Special Utilities...

Special Utilities

Utilities to produce graphics library compatible data structures

ftrasterize

 Uses the FreeType font rendering package to convert your font into a graphic
library format.

 Supported fonts include: TrueType®, OpenType®, PostScript® Type 1 and
Windows® FNT.

lmi-button

 Creates custom shaped buttons using a script plug-in for GIMP. Produces
images for use by the pushbutton widget.

pnmtoc

 Converts a NetPBM image file into a graphics library compatible file.

 NetPBM image formats can be produced by: GIMP, NetPBM, ImageMajik and
others.

mkstringtable

 Converts a comma separated file (.csv) into a table of strings usable by graphics
library for pull down menus.

Lab...

 Lab 10: Graphics Library

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib 10 - 11

Lab 10: Graphics Library

Objective

In this lab you will connect the KenTec display to your LaunchPad board. You will experiment

with the example code and then write a program using the graphics library.

Lab 10: Graphics Library

 Connect Kentec Display

 Experiment with demo
project

 Write graphics library code

USB Emulation Connection

Agenda ...

Lab 10: Graphics Library

10 - 12 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib

Procedure

Connect the KenTec Display to your LaunchPad Board

1. Carefully connect the KenTec display to your LaunchPad board. Note the part numbers

on the front of the LCD display. Those part numbers should be at the end of the

LaunchPad board that has the two pushbuttons when oriented correctly. Make sure that

all the BoosterPack pins are correctly engaged into the connectors on the bottom of the

display.

Import Project

2. We’re going to use the Kentec example project provided by the manufacturer. Maximize

Code Composer and click Project Import Existing CCS Eclipse Project. Make the

settings shown below and click Finish. Note that this project will be automatically copied

into your workspace.

 Lab 10: Graphics Library

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib 10 - 13

3. Expand the project in the Project Explorer pane, and then expand the drivers folder. The

two files in this folder; Kentec320x240x16_ssd2119_8bit.c and touch.c are

the driver files for the display and the touch overlay. Open the files and take a look

around. Some of these files were derived from earlier StellarisWare examples, so you

may see references to the DK-LM3S9B96 board.

Kentec320x240x16_ssd2119_8bit.c contains the low level Display Driver

interface to the LCD hardware, including the pin mapping, contrast controls and simple

graphics primitives.

Build, Download and Run the Demo

4. Make sure your board is connected to your computer, and then click the Debug button to

build and download the program to the LM4F120H5QR device. The project should build

and link without any warnings or errors.

5. Watch your LCD display and click the Resume button to run the demo program. Using

the + and – buttons on-screen, navigate through the eight screens. Make sure to try out

the checkboxes, push buttons, radio buttons and sliders. When you’re done

experimenting, click Terminate on the CCS menu bar to return to the CCS Editing

perspective.

Writing Our Own Code

6. The first task that our lab software will do is to display an image. So we need to create an

image in a format that the graphics library can understand. If you have not done so

already, download GIMP from www.gimp.org and install it on your PC. The steps below

will go through the process of clipping the photo below and displaying it on the LCD

display. If you prefer to use an existing image or photograph, or one taken from your

smartphone camera now, simply adapt the steps below.

7. Make sure that this page of the workbook pdf is open for viewing and press PrtScn on

your keyboard. This will copy the screen to your clipboard. The dimensions of the photo

below approximate that of the 320x240 KenTec LCD.

http://www.gimp.org/

Lab 10: Graphics Library

10 - 14 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib

8. Open GIMP (make sure it is version 2.8 or later) and click Edit Paste. In the toolbox

window, click the Rectangle Select tool, and select tightly around the border of the photo.

Zoom in if that is easier for you. Click Image Crop to selection. Click Image Scale

Image and make sure that the image size width/height is 320x240 and click Scale. You

may need to click the “chain” symbol to the right of the pixel boxes to stop GIMP from

preserving the wrong dimensions.

9. Convert the image to indexed mode by clicking Image Mode Indexed. Select

Generate optimum palette and change the Maximum number of colors box to 16 (the

color depth of the LCD). Click Convert.

10. Save the file by clicking File Export… Name the image pic, change the save folder to

C:\StellarisWare\tools\bin and select PNM image as the file type using the

+ Select File Type just above the Help button. Click Export. When prompted, select

Raw as the data formatting and click Export. Close GIMP.

11. Now that we have a source image file in PNM format, we can convert it to something that

the graphics library can handle. We’ll use the pnmtoc (PNM to C array) conversion

utility to do the translation.

Open a command prompt by clicking Start Run. Type cmd in the window and click

Open. The pnmtoc utility is in C:\StellarisWare\tools\bin. Type (Ctrl-V

will not work) cd C:\StellarisWare\tools\bin in the command window,

then press Enter to change the folder to that location.

Finally, perform the conversion by typing pnmtoc –c pic.pnm > pic.c in the

command window and hit Enter. When the process completes correctly, the cursor will

simply drop to a new line. Close the DOS window.

12. Using Windows Explorer, find the CCS workspace in your My Documents folder. Open

the folder and find the grlib_demo folder that was copied here when you imported this

project. Copy pic.c from C:\StellarisWare\tools\bin to the grlib_demo

folder.

Look back in the expanded grlib_demo project in the CCS Project Explorer. If the

pic.c file does not appear there, right-click on the project and select Refresh.

 Lab 10: Graphics Library

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib 10 - 15

Modify pic.c

13. Open pic.c and add the following include to the very top of the file:

#include "grlib/grlib.h"

Your pic.c file should look something like this (your data will vary greatly):

#include "grlib/grlib.h"

const unsigned char g_pucImage[] =

{

 IMAGE_FMT_4BPP_COMP,

 96, 0,

 64, 0,

 15,

 0x00, 0x02, 0x00,

 0x18, 0x1a, 0x19,

 0x28, 0x2a, 0x28,

 0x38, 0x3a, 0x38,

 0x44, 0x46, 0x44,

 0x54, 0x57, 0x55,

 0x62, 0x65, 0x63,

 0x72, 0x75, 0x73,

 0x81, 0x84, 0x82,

 0x93, 0x96, 0x94,

 0xa2, 0xa5, 0xa3,

 0xb3, 0xb6, 0xb4,

 0xc4, 0xc7, 0xc5,

 0xd7, 0xda, 0xd8,

 0xe8, 0xeb, 0xe9,

 0xf4, 0xf8, 0xf5,

 0xff, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0xff, 0x07, 0x07,

 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0xff, 0x07, 0x07, 0x07, 0x07, 0x07,

 0x07, 0x07, 0x07, 0xfc, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x03, 0x77,

 0x23, 0x77, 0x77, 0xe9, 0x77, 0x78, 0x70, 0x07, 0x07, 0xc1, 0x77, 0x2c,

 0x04, 0xde, 0xee, 0xee, 0xee, 0xe9, 0x3c, 0xee, 0xa1, 0x07, 0x07, 0x77,

 0x2c, 0x03, 0xcf, 0x00, 0xee, 0xee, 0xee, 0xef, 0xee, 0xef, 0xfe, 0xa0,

 0xf0, 0x07, 0x07, 0x77, 0x2c, 0x03, 0xcf, 0xee, 0xee, 0x4f, 0xee, 0xe9,

 0xee, 0xa0, 0x07, 0x07, 0x77, 0x2c, 0x04, 0x03, 0xcf, 0xee, 0xee, 0xee,

 0xe9, 0xee, 0x90, 0xf0, 0x07, 0x07, 0x77, 0x2c, 0x03, 0xcf, 0xee, 0xee,

 0x4f, 0xee, 0xe9, 0xee, 0x90, 0x07, 0x07, 0x77, 0x2c, 0x04, 0x03, 0xcf,

 many, many more lines of this data …

 0x77, 0x2c, 0x19, 0xfe, 0xee, 0xef, 0x03, 0xee, 0xee, 0xee, 0xee, 0xfb,

 0x20, 0x07, 0x07, 0xc1, 0x77, 0x2c, 0x05, 0xdf, 0xee, 0xee, 0xee, 0xe9,

 0x78, 0xf9, 0x07, 0x07, 0x77, 0x2d, 0x01, 0x8d, 0xee, 0x2f, 0xee, 0xee,

 0xe9, 0xf7, 0x07, 0x07, 0x77, 0x2e, 0x00, 0x39, 0xef, 0xee, 0xee, 0xee,

 0xee, 0xee, 0xf7, 0xf0, 0x07, 0x07, 0x77, 0x2e, 0x06, 0xdf, 0xee, 0xee,

 0x0f, 0xee, 0xee, 0xee, 0xf6, 0x07, 0x07, 0x77, 0x2f, 0x01, 0x7d, 0xfe,

 0xee, 0xee, 0xee, 0xee, 0xf7, 0x07, 0xe0, 0x07, 0x77, 0x2f, 0x17, 0xdf,

 0xee, 0xee, 0xee, 0x3c, 0xee, 0xf7, 0x07, 0x07, 0x77, 0x2f, 0x01, 0x7d,

 0x03, 0xee, 0xee, 0xee, 0xee, 0xf9, 0x10, 0x07, 0x07, 0xc0, 0x77, 0x2f,

 0x05, 0xad, 0xee, 0xfe, 0xee, 0xfc, 0x78, 0x20, 0x07, 0x07, 0x77, 0x2f,

 0x00, 0x27, 0x9d, 0x0f, 0xed, 0xee, 0xec, 0x40, 0x07, 0x07, 0x77, 0x2f,

 0x01, 0x00, 0x00, 0x28, 0x9a, 0xcc, 0xa9, 0x30, 0x07, 0xff, 0x07, 0x77,

 0x2f, 0x07, 0x07, 0x07, 0x07, 0x07, 0xc0, 0x07, 0x07,

};

Save your changes and close the pic.c editor pane. If you’re having issues with this, you can

find a pic.c file in the Lab10 folder.

Lab 10: Graphics Library

10 - 16 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib

Main.c

14. To speed things up, we’re going to use the entire demo project as a template for our own

main() code. But we can’t have grlib_demo.c in the project since it already has a

main(). In the Project Explorer, right-click on grlib_demo.c and select Resource

Configurations Exclude from Build… Click the Select All button to select both the

Debug and Release configurations, and then click OK. In this manner we can keep the

old file in the project, but it will not be used during the build process. This is a valuable

technique when you are building multiple versions of a system that shares much of the

code between them.

15. On the CCS menu bar, click File New Source File. Make the selections shown

below and click Finish:

16. Open main.c for editing. Add (or copy/paste) the following lines to the top:

#include "inc/hw_memmap.h"

#include "inc/hw_types.h"

#include "driverlib/debug.h"

#include "driverlib/sysctl.h"

#include "grlib/grlib.h"

#include "drivers/Kentec320x240x16_ssd2119_8bit.h"

Pointer to the Image Array

17. The declaration of the image array needs to be made, as well as the declaration of two

variables. The variables defined below are used for initializing the Context and Rect

structures. Context is a definition of the screen such as the clipping region, default

color and font. Rect is a simple structure for drawing rectangles. Look up these APIs in

the Graphics Library users guide .

Add a line for spacing and add the following lines after the includes:

extern const unsigned char g_pucImage[];
tContext sContext;

tRectangle sRect;

 Lab 10: Graphics Library

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib 10 - 17

Driver Library Error Routine

18. The following code will be called if the driver library encounters an error.

Leave a line for spacing and enter these line of codes after the lines above:

#ifdef DEBUG

void__error__(char *pcFilename, unsigned long ulLine)

{

}

#endif

Main()

19. The main() routine will be next. Leave a blank line for spacing and enter these lines of

code after the lines above:

int main(void)

{

}

Initialization

20. Set the clocking to run at 50 MHz using the PLL (400MHz ÷ 2 ÷ 4). Leave a line for

spacing, then insert this line as the first inside main():

SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN | SYSCTL_XTAL_16MHZ);

Initialize the display driver. Skip a line and insert this line after the last:

 Kentec320x240x16_SSD2119Init();

This next function initializes a drawing context, preparing it for use. The provided dis-

play driver will be used for all subsequent graphics operations, and the default clipping

region will be set to the extent of the LCD screen. Insert this line after the last:

GrContextInit(&sContext, &g_sKentec320x240x16_SSD2119);

21. Let’s add a call to a function that will clear the screen. We’ll create that function in a

moment. Add the following line after the last one:

ClrScreen();

Lab 10: Graphics Library

10 - 18 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib

22. The following function will create a rectangle that covers the entire screen, set the fore-

ground color to black, and fill the rectangle by passing the structure sRect by reference.

The top left corner of the LCD display is the point (0,0) and the bottom right corner is

(319,239). Add the following code after the final closing brace of the program in main.c.

void ClrScreen()

{

 sRect.sXMin = 0;

 sRect.sYMin = 0;

 sRect.sXMax = 319;

 sRect.sYMax = 239;

 GrContextForegroundSet(&sContext, ClrBlack);

 GrRectFill(&sContext, &sRect);

 GrFlush(&sContext);

}

23. Declare the function at the top of your code right below your variable definitions:

void ClrScreen(void);

Displaying the Image

24. Display the image by passing the global image variable g_pucImage into

GrImageDraw(...) and place the image on the screen by locating the top-left corner at

(0,0) …we’ll adjust this later if needed. Leave a line for spacing, then insert this line after

the ClrScreen() call in main():

GrImageDraw(&sContext, g_pucImage, 0, 0);

25. The function call below flushes any cached drawing operations. For display drivers that

draw into a local frame buffer before writing to the actual display, calling this function

will cause the display to be updated to match the contents of the local frame buffer. Insert

this line after the last:

GrFlush(&sContext);

26. We will be stepping through a series of displays in this lab, so we want to leave each

display on the screen long enough to see it before it is erased. The delay below will give

you a chance to appreciate your work. Leave a line for spacing, then insert this line after

the last:

SysCtlDelay(SysCtlClockGet());

In previous labs we’ve simply passed a number to the SysCtlDelay() API call, but if

you were to change the CPU clock speed, your delay time would change. SysCt-

lClockGet() will return the system clock speed and we can use that as our delay ba-

sis. Obviously, you could have your delay be twice, half, 1/5th or some other multiple of

this.

 Lab 10: Graphics Library

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib 10 - 19

27. Before we go any further, we’d like to take the code for a test run. With that in mind

we’re going to add the final code pieces now, and insert later lab code in front of this.

LCD displays are not especially prone to burn in, but clearing the screen will mark a clear

break between one step in the code and the next. This performs the same function as step

24 and also flushes the cache. Leave several lines for spacing and add this line below the

last:

ClrScreen();

28. Add a while loop to the end of the code to stop execution. Leave a line for spacing, then

insert these line after the last:

while(1)
{

}

Don’t forget that you can auto-correct the indentation if needed.

Lab 10: Graphics Library

10 - 20 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib

If you’re having issues, you can find this code in main1.txt in the Lab10 folder.

Your code should look like this:

#include "inc/hw_memmap.h"

#include "inc/hw_types.h"

#include "driverlib/debug.h"

#include "driverlib/sysctl.h"

#include "grlib/grlib.h"

#include "drivers/Kentec320x240x16_ssd2119_8bit.h"

extern const unsigned char g_pucImage[];

tContext sContext;

tRectangle sRect;

void ClrScreen(void);

#ifdef DEBUG

void__error__(char *pcFilename, unsigned long ulLine)

{

}

#endif

int main(void)

{

 SysCtlClockSet(SYSCTL_SYSDIV_4|SYSCTL_USE_PLL|SYSCTL_OSC_MAIN|SYSCTL_XTAL_16MHZ);

 Kentec320x240x16_SSD2119Init();

 GrContextInit(&sContext, &g_sKentec320x240x16_SSD2119);

 ClrScreen();

 GrImageDraw(&sContext, g_pucImage, 0, 0);

 GrFlush(&sContext);

 SysCtlDelay(SysCtlClockGet());

 // Later lab steps go between here

 // and here

 ClrScreen();

 while(1)

 {

 }

}

void ClrScreen()

{

 sRect.sXMin = 0;

 sRect.sYMin = 0;

 sRect.sXMax = 319;

 sRect.sYMax = 239;

 GrContextForegroundSet(&sContext, ClrBlack);

 GrRectFill(&sContext, &sRect);

 GrFlush(&sContext);

}

 Lab 10: Graphics Library

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib 10 - 21

Check the Build Options

29. Now would be a good time to check the build options that have been set in this demo

code. You should know how to do this without explicit steps by now. Take a look in the

Linker’s File Search Path and note that the .lib file for the graphics library has been

included.

You might notice the use of two “new” path variables:

 CG_TOOL_ROOT

 SW_ROOT

Take at look in the project properties under Resource Linked Resources to see where

these paths are defined.

Run the Code

30. Make sure grlib_demo is the active project. Compile and download your application

by clicking the Debug button. Click the Resume button to run the program that was

downloaded to the flash memory of your LM4F120H5QR. If your coding efforts were

successful, you should see your image appear on the LCD display for a few seconds, then

disappear.

When you’re finished, click the Terminate button to return to the CCS Edit perspective.

When you are including images in your projects, remember that they can be quite large in

terms of memory space. This might possibly require a larger flash device, and increase

your system cost.

Lab 10: Graphics Library

10 - 22 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib

Display Text On-Screen

31. Refer back to the code on page 10-20. In main.c in the area marked:

// Later lab steps go between here

// and here

insert the following function call to clear the screen and flush the buffer:

ClrScreen();

32. Next we’ll display the text. Display text starting at (x,y) with the no background color.

The third parameter (-1) simply tells the API function to send the entire string, rather than

having to count the characters.

GrContextForegroundSet(...): Set the foreground for the text to be red.

GrContextFontSet(...): Set the font to be a max height of 30 pixels.

GrRectDraw(...): Put a white border around the screen.

GrFlush(...): And refresh the screen by matching the contents of the local frame

buffer.

Note the colors that are being used. If you’d like to try other colors, fonts or sizes, look in

the back of the Graphics Library User’s Guide. Add the following lines after the previous

ones:

 sRect.sXMin = 1;

 sRect.sYMin = 1;

 sRect.sXMax = 318;

 sRect.sYMax = 238;

 GrContextForegroundSet(&sContext, ClrRed);

 GrContextFontSet(&sContext, &g_sFontCmss30b);

 GrStringDraw(&sContext, "Texas", -1, 110, 2, 0);

 GrStringDraw(&sContext, "Instruments", -1, 80, 32, 0);

 GrStringDraw(&sContext, "Graphics", -1, 100, 62, 0);

 GrStringDraw(&sContext, "Lab", -1, 135, 92, 0);

 GrContextForegroundSet(&sContext, ClrWhite);

 GrRectDraw(&sContext, &sRect);

 GrFlush(&sContext);

33. Add a delay so you can view your work.

SysCtlDelay(SysCtlClockGet());

Save your file.

 Lab 10: Graphics Library

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib 10 - 23

If you’re having issues, you can find this code in main2.txt in the Lab10 folder.

Your added code should look like this:

 // Later lab steps go between here

 ClrScreen();

 sRect.sXMin = 1;

 sRect.sYMin = 1;

 sRect.sXMax = 318;

 sRect.sYMax = 238;

 GrContextForegroundSet(&sContext, ClrRed);

 GrContextFontSet(&sContext, &g_sFontCmss30b);

 GrStringDraw(&sContext, "Texas", -1, 110, 2, 0);

 GrStringDraw(&sContext, "Instruments", -1, 80, 32, 0);

 GrStringDraw(&sContext, "Graphics", -1, 100, 62, 0);

 GrStringDraw(&sContext, "Lab", -1, 135, 92, 0);

 GrContextForegroundSet(&sContext, ClrWhite);

 GrRectDraw(&sContext, &sRect);

 GrFlush(&sContext);

 SysCtlDelay(SysCtlClockGet());

 // and here

Build, Load and Test

34. Build, load and run your code. If your changes are correct, you should see the image

again for a few seconds, followed by the on-screen text in a box for a few seconds. Then

the display will blank out. Return to the CCS Edit perspective when you’re done.

Lab 10: Graphics Library

10 - 24 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib

Drawing Shapes

35. Let’s add a filled-in yellow circle. Make the foreground yellow and center the circle at

(80,182) with a radius of 50. Add a line for spacing and then add these lines after the

SysCtlDelay() added in step 33:

GrContextForegroundSet(&sContext, ClrYellow);

GrCircleFill(&sContext, 80, 182, 50);

36. Draw an empty green rectangle starting with the top left corner at (160,132) and finishing

at the bottom right corner at (312,232). Add a line for spacing and add the following lines

after the last ones:

 sRect.sXMin = 160;

 sRect.sYMin = 132;

 sRect.sXMax = 312;

 sRect.sYMax = 232;

 GrContextForegroundSet(&sContext, ClrGreen);

 GrRectDraw(&sContext, &sRect);

37. Add a short delay to appreciate your work. Add a line for spacing and add the following

line after the last ones:

SysCtlDelay(SysCtlClockGet());

Save your work.

 Lab 10: Graphics Library

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib 10 - 25

If you’re having issues, you can find this code in main3.txt in the Lab10 folder.

Your added code should look like this:

 // Later lab steps go between here

 ClrScreen();

 sRect.sXMin = 1;

 sRect.sYMin = 1;

 sRect.sXMax = 318;

 sRect.sYMax = 238;

 GrContextForegroundSet(&sContext, ClrRed);

 GrContextFontSet(&sContext, &g_sFontCmss30b);

 GrStringDraw(&sContext, "Texas", -1, 110, 2, 0);

 GrStringDraw(&sContext, "Instruments", -1, 80, 32, 0);

 GrStringDraw(&sContext, "Graphics", -1, 100, 62, 0);

 GrStringDraw(&sContext, "Lab", -1, 135, 92, 0);

 GrContextForegroundSet(&sContext, ClrWhite);

 GrRectDraw(&sContext, &sRect);

 GrFlush(&sContext);

 SysCtlDelay(SysCtlClockGet());

 GrContextForegroundSet(&sContext, ClrYellow);

 GrCircleFill(&sContext, 80, 182, 50);

 sRect.sXMin = 160;

 sRect.sYMin = 132;

 sRect.sXMax = 312;

 sRect.sYMax = 232;

 GrContextForegroundSet(&sContext, ClrGreen);

 GrRectDraw(&sContext, &sRect);

 SysCtlDelay(SysCtlClockGet());

 // and here

Lab 10: Graphics Library

10 - 26 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib

For reference, the final code should look like this:

#include "inc/hw_memmap.h"

#include "inc/hw_types.h"

#include "driverlib/debug.h"

#include "driverlib/sysctl.h"

#include "grlib/grlib.h"

#include "drivers/Kentec320x240x16_ssd2119_8bit.h"

extern const unsigned char g_pucImage[];

tContext sContext;

tRectangle sRect;

void ClrScreen(void);

#ifdef DEBUG

void__error__(char *pcFilename, unsigned long ulLine)

{

}

#endif

int main(void)

{

 SysCtlClockSet(SYSCTL_SYSDIV_4|SYSCTL_USE_PLL|SYSCTL_OSC_MAIN|SYSCTL_XTAL_16MHZ);

 Kentec320x240x16_SSD2119Init();

 GrContextInit(&sContext, &g_sKentec320x240x16_SSD2119);

 ClrScreen();

 GrImageDraw(&sContext, g_pucImage, 0, 0);

 GrFlush(&sContext);

 SysCtlDelay(SysCtlClockGet());

 // Later lab steps go between here

 ClrScreen();

 sRect.sXMin = 1;

 sRect.sYMin = 1;

 sRect.sXMax = 318;

 sRect.sYMax = 238;

 GrContextForegroundSet(&sContext, ClrRed);

 GrContextFontSet(&sContext, &g_sFontCmss30b);

 GrStringDraw(&sContext, "Texas", -1, 110, 2, 0);

 GrStringDraw(&sContext, "Instruments", -1, 80, 32, 0);

 GrStringDraw(&sContext, "Graphics", -1, 100, 62, 0);

 GrStringDraw(&sContext, "Lab", -1, 135, 92, 0);

 GrContextForegroundSet(&sContext, ClrWhite);

 GrRectDraw(&sContext, &sRect);

 GrFlush(&sContext);

 SysCtlDelay(SysCtlClockGet());

 GrContextForegroundSet(&sContext, ClrYellow);

 GrCircleFill(&sContext, 80, 182, 50);

 sRect.sXMin = 160;

 sRect.sYMin = 132;

 sRect.sXMax = 312;

 sRect.sYMax = 232;

 GrContextForegroundSet(&sContext, ClrGreen);

 GrRectDraw(&sContext, &sRect);

 SysCtlDelay(SysCtlClockGet());

 // and here

 ClrScreen();

 while(1)

 {

 }

}

void ClrScreen()

{

 sRect.sXMin = 0;

 sRect.sYMin = 0;

 sRect.sXMax = 319;

 sRect.sYMax = 239;

 GrContextForegroundSet(&sContext, ClrBlack);

 GrRectFill(&sContext, &sRect);

 GrFlush(&sContext);

}

This is the code in main3.txt.

 Lab 10: Graphics Library

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib 10 - 27

Build, Load and Test

38. Build, load and run your code to make sure that your changes work. Return to the CCS

Edit perspective when you are done.

Lab 10: Graphics Library

10 - 28 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib

Widgets

39. Let’s play with some widgets. In this case, we’ll create a screen with a nice header and a

large rectangular button that will toggle the red LED on and off. Modifying the existing

code would be a little tedious, so we’ll create a new file.

40. In the Project Explorer, right-click on main.c and select Resource Configurations

Exclude from Build… Click the Select All button to select both the Debug and Release

configurations, and then click OK.

41. On the CCS menu bar, click File New Source File. Make the selections shown

below and click Finish:

42. Add the following support files to the top of MyWidget.c:

#include "inc/hw_memmap.h"

#include "inc/hw_types.h"

#include "driverlib/interrupt.h"

#include "driverlib/sysctl.h"

#include "driverlib/gpio.h"

#include "grlib/grlib.h"

#include "grlib/widget.h"

#include "grlib/canvas.h"

#include "grlib/pushbutton.h"

#include "drivers/Kentec320x240x16_ssd2119_8bit.h"

#include "drivers/touch.h"

43. The next two lines provide names for structures needed to create the background canvas

and the button widget. Add a line for spacing, then add these lines below the last:

extern tCanvasWidget g_sBackground;

extern tPushButtonWidget g_sPushBtn;

44. When the button widget is pressed, a handler called OnButtonPress() will toggle the

LED. Add a line for spacing, then add this prototype below the last:

void OnButtonPress(tWidget *pWidget);

 Lab 10: Graphics Library

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib 10 - 29

45. Widgets are arranged on the screen in order of a parent-child relationship, where the

parent is in the back. This relationship can extend multiple levels. In our example, we’re

going to have the background be the parent or root and the heading will be a child of the

background. The button will be a child of the heading. Add a line for spacing and then

add the following two global variables (one for the background and one for the button)

below the last:

Canvas(g_sHeading, &g_sBackground, 0, &g_sPushBtn,

 &g_sKentec320x240x16_SSD2119, 0, 0, 320, 23,

 (CANVAS_STYLE_FILL | CANVAS_STYLE_OUTLINE | CANVAS_STYLE_TEXT),

 ClrBlack, ClrWhite, ClrRed, g_pFontCm20, "LED Control", 0, 0);

Canvas(g_sBackground, WIDGET_ROOT, 0, &g_sHeading,

 &g_sKentec320x240x16_SSD2119, 0, 23, 320, (240 - 23),

 CANVAS_STYLE_FILL, ClrBlack, 0, 0, 0, 0, 0, 0);

 Rather than re-print the parameter list for these declarations, refer to section 5.2.3.1 in the

Stellaris Graphics Library User’s Guide (SW-GRL-UG-xxxx.pdf). The short description

is that there will be a black background. In front of that is a white rectangle at the top of

the screen with “LED Control” inside it.

46. Next up is the definition for the rectangular button we’re going to use. The button is

functionally in front of the heading, but physically located below it (refer to the picture in

step 50). It will be a red rectangle with a gray background and “Toggle red LED” inside

it. When pressed it will fill with white and the handler named OnButtonPress will be

called. Add a line for spacing and then add the following code below the last:

RectangularButton(g_sPushBtn, &g_sHeading, 0, 0,

 &g_sKentec320x240x16_SSD2119, 60, 60, 200, 40,

 (PB_STYLE_OUTLINE | PB_STYLE_TEXT_OPAQUE | PB_STYLE_TEXT |

 PB_STYLE_FILL), ClrGray, ClrWhite, ClrRed, ClrRed,

 g_pFontCmss22b, "Toggle red LED", 0, 0, 0, 0, OnButtonPress);

Refer to section 10.2.3.33 in the Stellaris Graphics Library User’s Guide (spmu018n.pdf)

for more detail.

47. The last detail before the actual code is a flag variable to indicate whether the LED is on

or off. Add a line for spacing and then add the following code below the last:

tBoolean g_RedLedOn = false;

Lab 10: Graphics Library

10 - 30 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib

48. When the button is pressed, a handler called OnButton Press() will be called. This

handler uses the flag to switch between turning the red LED on or off. Add a line for

spacing and then add the following code below the last:

void OnButtonPress(tWidget *pWidget)

{

 g_RedLedOn = !g_RedLedOn;

 if(g_RedLedOn)

 {

 GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_1, 0x02);

 }

 else

 {

 GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_1, 0x00);

 }

}

49. Lastly is the main() routine. The steps are: initialize the clock, initialize the GPIO,

initialize the display, initialize the touchscreen, enable the touchscreen callback so that

the routine indicated in the button structure will be called when it is pressed, add the

background and paint it to the screen (parents first, followed by the children) and finally,

loop while the widget polls for a button press. Add a line for spacing and then add the

following code below the last:

int main(void)

{

 SysCt-

lClockSet(SYSCTL_SYSDIV_4|SYSCTL_USE_PLL|SYSCTL_OSC_MAIN|SYSCTL_XTAL_16MHZ);

 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);

 GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3);

 GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3, 0x00);

 Kentec320x240x16_SSD2119Init();

 TouchScreenInit();

 TouchScreenCallbackSet(WidgetPointerMessage);

 WidgetAdd(WIDGET_ROOT, (tWidget *)&g_sBackground);

 WidgetPaint(WIDGET_ROOT);

 while(1)

 {

 WidgetMessageQueueProcess();

 }

}

Save your file.

If you’re having issues, you can find this code in MyWidget.txt in the Lab10 folder.

Your added code should look like the next page:

 Lab 10: Graphics Library

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib 10 - 31

#include "inc/hw_memmap.h"

#include "inc/hw_types.h"

#include "driverlib/interrupt.h"

#include "driverlib/sysctl.h"

#include "driverlib/gpio.h"

#include "grlib/grlib.h"

#include "grlib/widget.h"

#include "grlib/canvas.h"

#include "grlib/pushbutton.h"

#include "drivers/Kentec320x240x16_ssd2119_8bit.h"

#include "drivers/touch.h"

extern tCanvasWidget g_sBackground;

extern tPushButtonWidget g_sPushBtn;

void OnButtonPress(tWidget *pWidget);

Canvas(g_sHeading, &g_sBackground, 0, &g_sPushBtn,

 &g_sKentec320x240x16_SSD2119, 0, 0, 320, 23,

 (CANVAS_STYLE_FILL | CANVAS_STYLE_OUTLINE | CANVAS_STYLE_TEXT),

 ClrBlack, ClrWhite, ClrRed, g_pFontCm20, "LED Control", 0, 0);

Canvas(g_sBackground, WIDGET_ROOT, 0, &g_sHeading,

 &g_sKentec320x240x16_SSD2119, 0, 23, 320, (240 - 23),

 CANVAS_STYLE_FILL, ClrBlack, 0, 0, 0, 0, 0, 0);

RectangularButton(g_sPushBtn, &g_sHeading, 0, 0,

 &g_sKentec320x240x16_SSD2119, 60, 60, 200, 40,

 (PB_STYLE_OUTLINE | PB_STYLE_TEXT_OPAQUE | PB_STYLE_TEXT |

 PB_STYLE_FILL), ClrGray, ClrWhite, ClrRed, ClrRed,

 g_pFontCmss22b, "Toggle red LED", 0, 0, 0, 0, OnButtonPress);

tBoolean g_RedLedOn = false;

void OnButtonPress(tWidget *pWidget)

{

 g_RedLedOn = !g_RedLedOn;

 if(g_RedLedOn)

 {

 GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_1, 0x02);

 }

 else

 {

 GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_1, 0x00);

 }

}

int main(void)

{

 SysCtlClockSet(SYSCTL_SYSDIV_4|SYSCTL_USE_PLL|SYSCTL_OSC_MAIN|SYSCTL_XTAL_16MHZ);

 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);

 GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3);

 GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3, 0x00);

 Kentec320x240x16_SSD2119Init();

 TouchScreenInit();

 TouchScreenCallbackSet(WidgetPointerMessage);

 WidgetAdd(WIDGET_ROOT, (tWidget *)&g_sBackground);

 WidgetPaint(WIDGET_ROOT);

 while(1)

 {

 WidgetMessageQueueProcess();

 }

}

Lab 10: Graphics Library

10 - 32 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- BoosterPacks and grLib

Build, Load and Test

50. Build, load and run your code to make sure that everything works. Press the rectangular

button and the red LED on the LaunchPad will light, press it again and it will turn off.

51. Click the Terminate button to return to the CCS Edit perspective when you are done.

Close all open lab projects and minimize Code Composer Studio.

52. If you want to reprogram the qs-rgb application that was originally on the LaunchPad

board, the steps are in section two of this workshop.

53. Homework Ideas:

 Change the red background of the button so that it stays on when the LED is lit

 Add more buttons to control the green and blue LEDs.

 Use the Lab5 ADC code to display the measured temperature on the LCD in real

time.

 Use the RTC to display the time of day on screen.

 Use the Lab6 Hibernation code to make the device sleep, and the backlight go

off, after no screen touch for 10 seconds

 Use the Lab7 USB code to send data to the LCD and touch screen presses back to

the PC.

 Use the Lab9 sine wave code to create a program that displays the sine wave data

on the LCD screen.

 You’re done.

